Vers une CAractérisation et Paramétrisation globale de la TURbidité dans les Estuaires sous pressions anthropiques et climatiques [CAPTURE]

Florent Grasso (*Ifremer – DYNECO/DHYSED*)

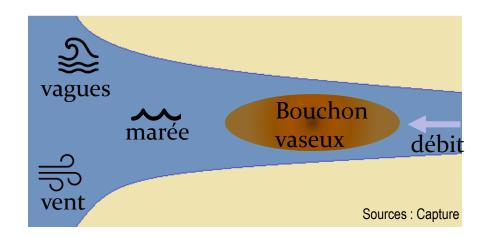
E. Bismuth, V. Briche, R. Buchet, H. Burchard, A. Daniel, N. Desroy, A. Dessier, Y. Dijkstra,

H. Fallou (GIPLE) E. Jaouen, F. Kösters, R. Lafite, A. Lebreton, J.P Lemoine, M. Lepage, C. Le Pichon, M. Muntoni, F. Orvain, S. Schmidt, H. Schuttelaars, A. Sottolichio, P. Souchu, S. Souissi, J.L. Trouvat, T. Van Kessel, J. Vanlede, B. Van Maren, R. Verney, R. Walther,

CAPTURE : Vers une **CA**ractérisation et **P**aramétrisation globale de la **TUR**bidité dans les **E**stuaires sous pression anthropique et climatique

- Contexte / objectif
- Méthodes
- Résultats attendus
- Comparaison Loire-Gironde-Seine
- Conclusion

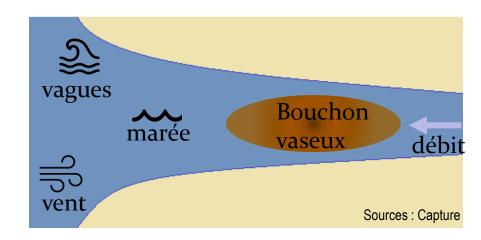
- Turbidité (Matières En Suspension) : paramètre clé du fonctionnement des écosystèmes estuariens
- → Impacts biologiques, biogéochimiques, écologiques, économiques



Contexte du projet CAPTURE

- Turbidité (Matières En Suspension) : paramètre clé du fonctionnement des écosystèmes estuariens
- → Impacts biologiques, biogéochimiques, écologiques, économiques

 Besoin de bien connaître les niveaux et fluctuations de turbidité dans les estuaires



Contexte du projet CAPTURE

- Turbidité (Matières En Suspension) : paramètre clé du fonctionnement des écosystèmes estuariens
- → Impacts biologiques, biogéochimiques, écologiques, économiques

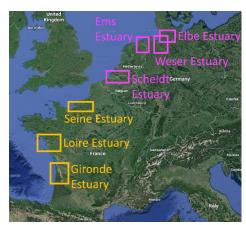
- Besoin de bien connaître les niveaux et fluctuations de turbidité dans les estuaires
- Difficultés pour prédire la turbidité estuarienne
- → Mesures *in situ* : non-spatialisées et non-intégratives
- → Imagerie satellite : seulement en surface
- → Modélisation numérique : coûteuse à mettre en place

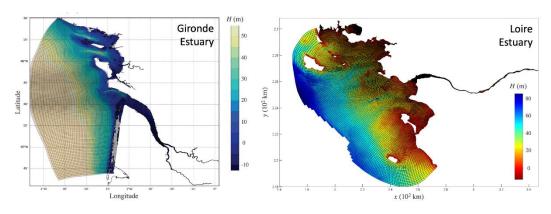
Objectifs du projet CAPTURE

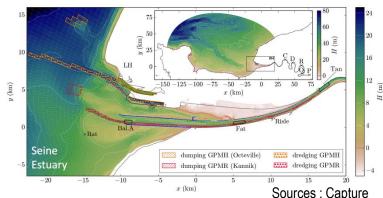
- Proposer une conceptualisation globale de la turbidité dans les estuaires
- → Soutien à l'étude et la gestion des socio-écosystèmes estuariens
- → Aide à la quantification des indicateurs du BEE
- → Application aux « petits » estuaires moins documentés
- → Evaluation des réponses potentielles des estuaires faces à des changements anthropiques (ex. morphologie) et climatiques (ex. apports amonts)

Objectifs du projet CAPTURE

- Proposer une conceptualisation globale de la turbidité dans les estuaires
- → Soutien à l'étude et la gestion des socio-écosystèmes estuariens
- → Aide à la quantification des indicateurs du BEE
- → Application aux « petits » estuaires moins documentés
- → Evaluation des réponses potentielles des estuaires faces à des changements anthropiques (ex. morphologie) et climatiques (ex. apports amonts)
- Fournir des métriques sédimentaires adéquates aux problématiques des socio-écosystèmes estuariens
- → Caractérisation du bouchon vaseux (ex. turbidité / position / extension / masse)




Méthode : approche inter-estuaires



- Estuaires bien documentés (Gironde, Loire, Seine)
- Réseaux de mesures (MAGEST, SYVEL, SYNAPSES)
- Modèles numériques (MARS3D-WW3-MUSTANG)
- Estuaires européens (Escaut, Ems, Weser, Elbe)
- Estuaires plus petits (Vilaine, Charente)

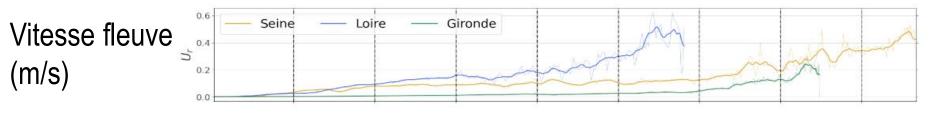
Sources: Capture

O/A C

Résultats attendus

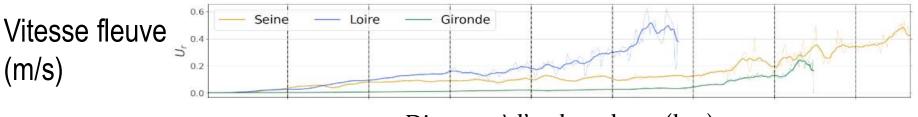
- Analyse critique de la turbidité dans les « grands » estuaires en réponse aux forçages hydrométéorologiques (marée, vagues, apports amont)
- Croisement des mesures *in situ* et simulations numériques pour proposer des recommandations sur le dimensionnement des réseaux de mesures (positionnement, gamme de turbidité)

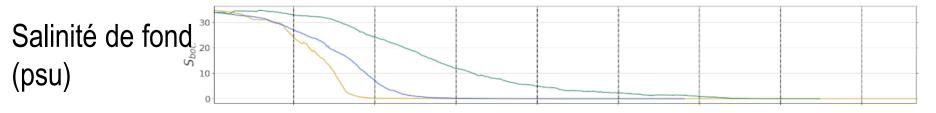
- Analyse critique de la turbidité dans les « grands » estuaires en réponse aux forçages hydrométéorologiques (marée, vagues, apports amont)
- Croisement des mesures *in situ* et simulations numériques pour proposer des recommandations sur le dimensionnement des réseaux de mesures (positionnement, gamme de turbidité)
- Proposition d'un outil générique permettant d'estimer la turbidité (MES, bouchon vaseux) à partir des caractéristiques des estuaires
- → Base pour la définition de typologie d'estuaires (turbidité potentielle)
- → Applicabilité aux « petits » estuaires moins documentés
- → Estimation des trajectoires potentielles face à des changements climatiques (apports amonts) et anthropiques (morphologie)
- → Pistes de réflexion sur les méthodes de gestion à adopter (restauration écologique à l'échelle des systèmes)



Forts marnages (>80th percentile) + **Débits moyens** (25th – 75th percentiles)

Distance à l'embouchure (km)

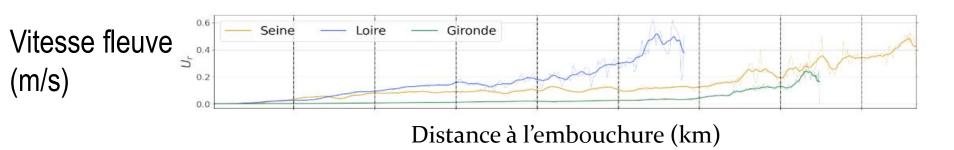


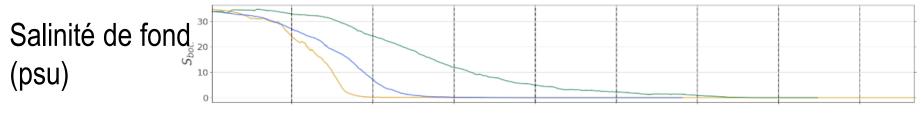


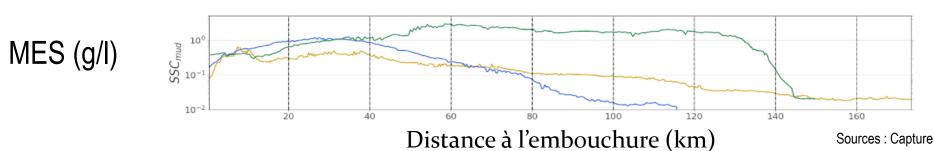
Forts marnages (>80th percentile) + **Débits moyens** (25th – 75th percentiles)

Distance à l'embouchure (km)

Distance à l'embouchure (km)

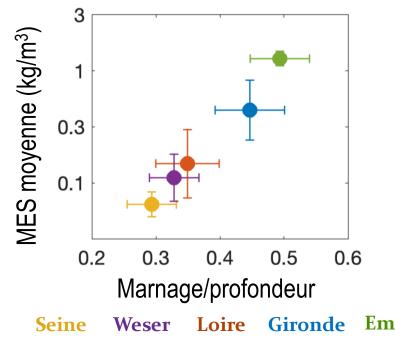






Forts marnages (>80th percentile) + **Débits moyens** (25th – 75th percentiles)

Distance à l'embouchure (km)



Peut on déterminer :

- Maximum de MES?
- Position du bouchon vaseux?
- Extension du bouchon vaseux?
- Zones de sédimentation ?

Avec des paramètres simples :

- Surface libre (ex. marégraphes)
- Débit du fleuve
- Morphologie (ex. cote chenal)

Besoins pour l'études des écosystèmes

- Paramètres impactant :
- → Turbidité (NTU/FNU) + concentration en MES (kg/m³)
- → Fraction de vase du substrat
- → Taux d'oxygène (à partir des concentrations en MES ?)
- Forçages impactant :
- → Variabilités saisonnières (ex. crue/étiage, périodes productives)
- → Variabilités tidales (vive eau morte eau) : turbidité min/max
- Orienter les métriques sédimentaires sur les impacts anthropiques

MERCI POUR VOTRE ATTENTION

Coordination: Florent Grasso (Ifremer – DYNECO/DHYSED)

16/16

COORDINATION INTER-ESTUAIRES

